116 research outputs found

    Antigen-Specific B Memory Cell Responses to Plasmodium falciparum Malaria Antigens and Schistosoma haematobium Antigens in Co-Infected Malian Children

    Get PDF
    Polyparasitism is common in the developing world. We have previously demonstrated that schistosomiasis-positive (SP) Malian children have age-dependent protection from malaria compared to matched schistosomiasis-negative (SN) children. Evidence of durable immunologic memory to malaria antigens is conflicting, particularly in young children and the effect of concomitant schistomiasis upon acquisition of memory is unknown. We examined antigen-specific B memory cell (MBC) frequencies (expressed as percentage of total number of IgG-secreting cells) in 84 Malian children aged 4–14 to malaria blood-stage antigens, apical membrane antigen 1 (AMA-1) and merozoite surface protein 1 (MSP-1) and to schistosomal antigens, Soluble Worm Antigenic Preparation (SWAP) and Schistosoma Egg Antigen (SEA), at a time point during the malaria transmission season and a follow-up dry season visit. We demonstrate, for the first time, MBC responses to S. haematobium antigens in Malian children with urinary egg excretion and provide evidence of seasonal acquisition of immunologic memory, age-associated differences in MBC acquisition, and correlation with circulating S. haematobium antibody. Moreover, the presence of a parasitic co-infection resulted in older children, aged 9–14 years, with underlying S. haematobium infection having significantly more MBC response to malaria antigens (AMA1 and MSP1) than their age-matched SN counterparts. We conclude that detectable MBC response can be measured against both malaria and schistosomal antigens and that the presence of S. haematobium may be associated with enhanced MBC induction in an age-specific manner

    Reduced T Regulatory Cell Response during Acute Plasmodium falciparum Infection in Malian Children Co-Infected with Schistosoma haematobium

    Get PDF
    Regulatory T cells (Tregs) suppress host immune responses and participate in immune homeostasis. In co-infection, secondary parasite infections may disrupt the immunologic responses induced by a pre-existing parasitic infection. We previously demonstrated that schistosomiasis-positive (SP) Malian children, aged 4-8 years, are protected against the acquisition of malaria compared to matched schistosomiasis-negative (SN) children.To determine if Tregs contribute to this protection, we performed immunologic and Treg depletion in vitro studies using PBMC acquired from children with and without S. haematobium infection followed longitudinally for the acquisition of malaria. Levels of Tregs were lower in children with dual infections compared to children with malaria alone (0.49 versus 1.37%, respectively, P = 0.004) but were similar months later, during a period with negligible malaria transmission. The increased levels of Tregs in SN subjects were associated with suppressed serum Th1 cytokine levels, as well as elevated parasitemia compared to co-infected counterparts.These results suggest that lower levels of Tregs in helminth-infected children correlate with altered circulating cytokine and parasitologic results which may play a partial role in mediating protection against falciparum malaria

    Children with cerebral malaria or severe malarial anaemia lack immunity to distinct variant surface antigen subsets

    Get PDF
    Abstract Variant surface antigens (VSAs) play a critical role in severe malaria pathogenesis. Defining gaps, or “lacunae”, in immunity to these Plasmodium falciparum antigens in children with severe malaria would improve our understanding of vulnerability to severe malaria and how protective immunity develops. Using a protein microarray with 179 antigen variants from three VSA families as well as more than 300 variants of three other blood stage P. falciparum antigens, reactivity was measured in sera from Malian children with cerebral malaria or severe malarial anaemia and age-matched controls. Sera from children with severe malaria recognized fewer extracellular PfEMP1 fragments and were less reactive to specific fragments compared to controls. Following recovery from severe malaria, convalescent sera had increased reactivity to certain non-CD36 binding PfEMP1s, but not other malaria antigens. Sera from children with severe malarial anaemia reacted to fewer VSAs than did sera from children with cerebral malaria, and both of these groups had lacunae in their seroreactivity profiles in common with children who had both cerebral malaria and severe malarial anaemia. This microarray-based approach may identify a subset of VSAs that could inform the development of a vaccine to prevent severe disease or a diagnostic test to predict at-risk children

    Interactions and potential implications of Plasmodium falciparum-hookworm coinfection in different age groups in south-central Côte d'Ivoire

    Get PDF
    BACKGROUND: Given the widespread distribution of Plasmodium and helminth infections, and similarities of ecological requirements for disease transmission, coinfection is a common phenomenon in sub-Saharan Africa and elsewhere in the tropics. Interactions of Plasmodium falciparum and soil-transmitted helminths, including immunological responses and clinical outcomes of the host, need further scientific inquiry. Understanding the complex interactions between these parasitic infections is of public health relevance considering that control measures targeting malaria and helminthiases are going to scale.METHODOLOGY: A cross-sectional survey was carried out in April 2010 in infants, young school-aged children, and young non-pregnant women in south-central Côte d'Ivoire. Stool, urine, and blood samples were collected and subjected to standardized, quality-controlled methods. Soil-transmitted helminth infections were identified and quantified in stool. Finger-prick blood samples were used to determine Plasmodium spp. infection, parasitemia, and hemoglobin concentrations. Iron, vitamin A, riboflavin, and inflammation status were measured in venous blood samples.PRINCIPAL FINDINGS: Multivariate regression analysis revealed specific association between infection and demographic, socioeconomic, host inflammatory and nutritional factors. Non-pregnant women infected with P. falciparum had significantly lower odds of hookworm infection, whilst a significant positive association was found between both parasitic infections in 6- to 8-year-old children. Coinfected children had lower odds of anemia and iron deficiency than their counterparts infected with P. falciparum alone.CONCLUSIONS/SIGNIFICANCE: Our findings suggest that interaction between P. falciparum and light-intensity hookworm infections vary with age and, in school-aged children, may benefit the host through preventing iron deficiency anemia. This observation warrants additional investigation to elucidate the mechanisms and consequences of coinfections, as this information could have important implications when implementing integrated control measures against malaria and helminthiases

    Impact of Schistosome Infection on Plasmodium falciparum Malariometric Indices and Immune Correlates in School Age Children in Burma Valley, Zimbabwe

    Get PDF
    A group of children aged 6–17 years was recruited and followed up for 12 months to study the impact of schistosome infection on malaria parasite prevalence, density, distribution and anemia. Levels of cytokines, malaria specific antibodies in plasma and parasite growth inhibition capacities were assessed. Baseline results suggested an increased prevalence of malaria parasites in children co-infected with schistosomiasis (31%) compared to children infected with malaria only (25%) (p = 0.064). Moreover, children co-infected with schistosomes and malaria had higher sexual stage geometric mean malaria parasite density (189 gametocytes/µl) than children infected with malaria only (73/µl gametocytes) (p = 0.043). In addition, a larger percentage of co-infected children (57%) had gametocytes as observed by microscopy compared to the malaria only infected children (36%) (p = 0.06). There was no difference between the two groups in terms of the prevalence of anemia, which was approximately 64% in both groups (p = 0.9). Plasma from malaria-infected children exhibited higher malaria antibody activity compared to the controls (p = 0.001) but was not different between malaria and schistosome plus malaria infected groups (p = 0.44) and malaria parasite growth inhibition activity at baseline was higher in the malaria-only infected group of children than in the co-infected group though not reaching statistical significance (p = 0.5). Higher prevalence and higher mean gametocyte density in the peripheral blood may have implications in malaria transmission dynamics during co-infection with helminths

    Impact of intermittent preventive treatment with sulphadoxine-pyrimethamine targeting the transmission season on the incidence of clinical malaria in children in Mali

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies have shown that intermittent preventive malaria treatment (IPT) in infants in areas of stable malaria transmission reduces malaria and severe anaemia incidence. However in most areas malaria morbidity and mortality remain high in older children.</p> <p>Methods</p> <p>To evaluate the effect of seasonal IPT with sulphadoxine pyrimethamine (SP) on incidence of malaria disease in area of seasonal transmission, 262 children 6 months-10 years in Kambila, Mali were randomized to receive either IPT with SP twice at eight weeks interval or no IPT during the transmission season of 2002 and were followed up for 12 months. Subjects were also followed during the subsequent transmission season in 2003 to assess possible rebound effect. Clinical malaria cases were treated with SP and followed to assess the <it>in vivo </it>response during both periods.</p> <p>Results</p> <p>The incidence rate of malaria disease per 1,000 person-months during the first 12 months was 3.2 episodes in the treatment group vs. 5.8 episodes in the control group with age-adjusted Protective Efficacy (PE) of 42.5%; [95% CI 28.6%–53.8%]. When the first 16 weeks of follow up is considered age-adjusted PE was 67.5% [95% CI 55.3% – 76.6%]. During the subsequent transmission season, the incidence of clinical malaria per 1000 persons-days was similar between the two groups (23.0 vs 21.5 episodes, age-adjusted IRR = 1.07 [95% CI, 0.90–1.27]). No significant difference was detected in <it>in vivo </it>response between the groups during both periods.</p> <p>Conclusion</p> <p>Two malaria intermittent treatments targeting the peak transmission season reduced the annual incidence rate of clinical malaria by 42.5% in an area with intense seasonal transmission. This simple strategy is likely to be one of the most effectives in reducing malaria burden in such areas.</p> <p>Trial Registration</p> <p>Clinicaltrials.gov NCT00623155</p

    Effect of treating Schistosoma haematobium infection on Plasmodium falciparum-specific antibody responses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The overlapping geographical and socio-economic distribution of malaria and helminth infection has led to several studies investigating the immunological and pathological interactions of these parasites. This study focuses on the effect of treating schistosome infections on natural human immune responses directed against plasmodia merozoite surface proteins MSP-1 (DPKMWR, MSP1<sub>19</sub>), and MSP-2 (CH150 and Dd2) which are potential vaccine candidates as well as crude malaria (schizont) and schistosome (whole worm homogenate) proteins.</p> <p>Methods</p> <p>IgG1 and IgG3 antibody responses directed against <it>Schistosoma haematobium </it>crude adult worm antigen (WWH) and <it>Plasmodium falciparum </it>antigens (merozoite surface proteins 1/2 and schizont extract), were measured by enzyme linked immunosorbent assay (ELISA) in 117 Zimbabweans (6–18 years old) exposed to <it>S. haematobium </it>and <it>P. falciparum </it>infection. These responses were measured before and after anti-helminth treatment with praziquantel to determine the effects of treatment on anti-plasmodial/schistosome responses.</p> <p>Results</p> <p>There were no significant associations between antibody responses (IgG1/IgG3) directed against <it>P. falciparum </it>and schistosomes before treatment. Six weeks after schistosome treatment there were significant changes in levels of IgG1 directed against schistosome crude antigens, plasmodia crude antigens, MSP-1<sub>19</sub>, MSP-2 (Dd2), and in IgG3 directed against MSP-1<sub>19</sub>. However, only changes in anti-schistosome IgG1 were attributable to the anti-helminth treatment.</p> <p>Conclusion</p> <p>There was no association between anti-<it>P. falciparum </it>and <it>S. haematobium antibody </it>responses in this population and <it>a</it>nti-helminth treatment affected only anti-schistosome responses and not responses against plasmodia crude antigens or MSP-1 and -2 vaccine candidates.</p

    Safety and Immunogenicity of an AMA-1 Malaria Vaccine in Malian Adults: Results of a Phase 1 Randomized Controlled Trial

    Get PDF
    The objective was to evaluate the safety, reactogenicity and immunogenicity of the AMA-1-based blood-stage malaria vaccine FMP2.1/AS02A in adults exposed to seasonal malaria.A phase 1 double blind randomized controlled dose escalation trial was conducted in Bandiagara, Mali, West Africa, a rural town with intense seasonal transmission of Plasmodium falciparum malaria. The malaria vaccine FMP2.1/AS02A is a recombinant protein (FMP2.1) based on apical membrane antigen-1 (AMA-1) from the 3D7 clone of P. falciparum, adjuvanted with AS02A. The comparator vaccine was a cell-culture rabies virus vaccine (RabAvert). Sixty healthy, malaria-experienced adults aged 18-55 y were recruited into 2 cohorts and randomized to receive either a half dose or full dose of the malaria vaccine (FMP2.1 25 microg/AS02A 0.25 mL or FMP2.1 50 microg/AS02A 0.5 mL) or rabies vaccine given in 3 doses at 0, 1 and 2 mo, and were followed for 1 y. Solicited symptoms were assessed for 7 d and unsolicited symptoms for 30 d after each vaccination. Serious adverse events were assessed throughout the study. Titers of anti-AMA-1 antibodies were measured by ELISA and P. falciparum growth inhibition assays were performed on sera collected at pre- and post-vaccination time points. Transient local pain and swelling were common and more frequent in both malaria vaccine dosage groups than in the comparator group. Anti-AMA-1 antibodies increased significantly in both malaria vaccine groups, peaking at nearly 5-fold and more than 6-fold higher than baseline in the half-dose and full-dose groups, respectively.The FMP2.1/AS02A vaccine had a good safety profile, was well-tolerated, and was highly immunogenic in malaria-exposed adults. This malaria vaccine is being evaluated in Phase 1 and 2 trials in children at this site

    Impact of repeated four-monthly anthelmintic treatment on Plasmodium infection in preschool children: a double-blind placebo-controlled randomized trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Helminth infections can alter susceptibility to malaria. Studies need to determine whether or not deworming programs can impact on <it>Plasmodium </it>infections in preschool children.</p> <p>Methods</p> <p>A double-blind placebo-controlled randomised trial was conducted to investigate the impact of anthelmintic treatment on <it>Plasmodium </it>infection in children aged 12-59 months. Children were randomly assigned to receive either albendazole or placebo every four months for 12 months with a follow-up at 14 months.</p> <p>Results</p> <p>320 children (out of 1228, 26.1%) complied with all the follow-up assessments. <it>Plasmodium </it>prevalence and mean <it>Plasmodium </it>parasite density was significantly higher in the treatment group (44.9% and 2319 ± SE 511) compared to the placebo group (33.3% and 1471 ± 341) at baseline. The odds of having <it>Plasmodium </it>infection increased over time for children in both the placebo and treatment groups, however this increase was significantly slower for children in the treatment group (P = 0.002). By month 14, mean <it>Plasmodium </it>density had increased by 156% in the placebo group and 98% in the treatment group but the rate of change in <it>Plasmodium </it>density was not significantly different between the groups. The change from baseline in haemoglobin had a steeper increase among children in the treatment group when compared to the placebo group but this was not statistically significant.</p> <p>Conclusions</p> <p>Repeated four-monthly anthelminthic treatments for 14 months resulted in a significantly lower increase in the prevalence of <it>Plasmodium </it>infection in preschool children which coincided with a reduction in both the prevalence and intensity of <it>A. lumbricoides </it>infections.</p> <p>Trial Registration</p> <p>Current controlled trials ISRCTN44215995</p

    Nrf2, a PPARγ Alternative Pathway to Promote CD36 Expression on Inflammatory Macrophages: Implication for Malaria

    Get PDF
    CD36 is the major receptor mediating nonopsonic phagocytosis of Plasmodium falciparum-parasitized erythrocytes by macrophages. Its expression on macrophages is mainly controlled by the nuclear receptor PPARγ. Here, we demonstrate that inflammatory processes negatively regulate CD36 expression on human and murine macrophages, and hence decrease Plasmodium clearance directly favoring the worsening of malaria infection. This CD36 downregulation in inflammatory conditions is associated with a failure in the expression and activation of PPARγ. Interestingly, using siRNA mediating knock down of Nrf2 in macrophages or Nrf2- and PPARγ-deficient macrophages, we establish that in inflammatory conditions, the Nrf2 transcription factor controls CD36 expression independently of PPARγ. In these conditions, Nrf2 activators, but not PPARγ ligands, enhance CD36 expression and CD36-mediated Plasmodium phagocytosis. These results were confirmed in human macrophages and in vivo where only Nrf2 activators improve the outcome of severe malaria. Collectively, this report highlights that the Nrf2 transcription factor could be an alternative target to PPARγ in the control of severe malaria through parasite clearance
    corecore